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Open boundaries in a cellular automaton model for traffic flow with metastable states
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The effects of open boundaries in the velocity-dependent randomization~VDR! model, a modified version of
the well-known Nagel-Schreckenberg~NaSch! cellular automaton model for traffic flow, are investigated. In
contrast to the NaSch model, the VDR model exhibits metastable states and phase separation in a certain
density regime. A proper insertion strategy allows us to investigate the whole spectrum of possible system
states and the structure of the phase diagram by Monte Carlo simulations. We observe an interesting micro-
scopic structure of the jammed phases, which is different from the one of the NaSch model. For finite systems,
the existence of high flow states in a certain parameter regime leads to a special structure of the fundamental
diagram measured in the open system. Apart from that, the results are in agreement with an extremal principle
for the flow, which has been introduced for models with a unique flow-density relation. Finally, we discuss the
application of our findings for a systematic flow optimization. Here some surprising results are obtained, e.g.,
a restriction of the inflow can lead to an improvement of the total flow through a bottleneck.
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I. INTRODUCTION

In recent years, cellular automata~CA! models@1# have
attracted a huge attention in statistical physics~and far be-
yond!. The so-called driven lattice gas models, i.e., a latt
connected to particle reservoirs at its boundaries~open
boundary conditions! whereby the particles have a preferr
hopping direction, are of special interest~see Refs.@2,3# for
an overview!. The key feature of this class of nonequilibriu
models is their simplicity. Albeit the dynamics is based
simple local rules, a rich and nontrivial behavior with a s
nificant relevance to various real world applications@2,3# can
be observed. One of the most interesting effects of dri
lattice gases are boundary-induced phase transitions@4#.
These have been extensively studied so that even exac
sults exist for some models, e.g., the asymmetric simple
clusion process~ASEP! ~see Ref. @3#, and references
therein!. The ASEP has originally been introduced to provi
an explanation for the kinetics of protein synthesis@5#, but
several extensions were proposed to enlarge the pote
field of applications. For instance, in Ref.@6# multiple occu-
pation of sites allows us to reproduce the complex dynam
of data transport in the Internet. However, in this paper
will concentrate on driven lattice gases in the context of
hicular traffic flow. Also in this area of transportation theo
generalized ASEPs have been used successfully@7–13#.

A few years ago, Nagel and Schreckenberg~NaSch! @14#
proposed a probabilistic CA model for traffic flow based
the ASEP. As an extension, velocitiesvmax.1 are allowed in
the NaSch model with the aim of mimicking effects of a
celeration and deceleration. This model is the simp
known CA that can reproduce the basic phenomena enc
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tered in real traffic, e.g., the occurrence of phantom tra
jams @15#. On the other hand, the NaSch model cannot
plain all experimental results. Therefore, modifications ha
been suggested. Here we concentrate on the NaSch m
with velocity-dependent randomization~VDR! @16,17#,
which exhibits metastable states and phase separation
tween jams and free-flowing vehicles. It is remarkable th
by taking into account further interactions among vehicles
a more detailed level, even empirical single-vehicle data
be reproduced with CA models@18#.

So far most studies on CA models for traffic flow we
done for systems with periodic boundary conditions. Ho
ever, open boundaries are relevant for many realistic si
tions in traffic where the number of vehicles can change, e
due to ramps. The special bulk dynamics~with the existence
of metastable states and hysteresis! makes the VDR mode
an interesting candidate for investigating the influence
open boundaries. For models with auniqueflow-density re-
lation ~fundamental diagram!, a rather general phenomeno
logical theory of boundary-induced phase transitions was
veloped in Refs.@4,19–22#. This theory is able to predict the
phase diagram of open systems even for complex mode
can be summarized by the extremal principle,

J5H maxrP[rR ,rL]J~r! for rL.rR

minrP[rL ,rR]J~r! for rL,rR ,
~1!

which relates the currentJ in the open system to the funda
mental diagramJ(r) of the periodic system.rL/R are the
typical densities at the left and right boundaries, respectiv
As pointed out in Refs.@23,24#, the phase diagram of th
NaSch model is similar to the one of the ASEP support
the predictions of Ref.@19#. Contrary to these results
Cheybanyet al. @25,26# as well as Huang@27# found large
deviations in the phase diagram of the NaSch model in co
parison to the ASEP. We will emphasize here~see Sec. III A!
that these deviations are related to the special boundary
©2002 The American Physical Society13-1
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ROBERT BARLOVIC et al. PHYSICAL REVIEW E 66, 046113 ~2002!
dition considered, and that the phase diagram of the Na
model is well comparable to the one of the ASEP.

The fundamental diagram of the VDR model shows
density regime in which the periodic system can be in t
different states. One is a metastable homogeneous state
the other one is a phase separated state with a large
between free-flowing vehicles. Such models with nonuniq
flow-density relations have not been discussed in the con
of the above mentioned phenomenological theory. There
it is interesting to analyze which results can be transferre
models with metastability and how many additional effe
can be observed due to the metastability. In Ref.@28#, a
special case of the VDR model~see Sec. II for details!, i.e.,
vmax51 and suppressed fluctuations, was studied. An in
esting striped microscopic structure appears and the e
tence of high flow states instead of a maximal current pha
which occurs in the ASEP as well as in the NaSch mo
under open boundary conditions, are observed. We will sh
in this paper that these results are transferable to thevmax
.1 case. Furthermore, a phenomenological approach
pable of explaining this occurrence of high flow states
given, in good agreement with numerical results. Allowi
fluctuations of free-flowing vehicles can lead to interest
effects due to spontaneous jamming. In this context a surp
ing application will be given, namely, the flow optimizatio
by a systematic reduction of the inflow.

Besides the modeling aspects there is much evide
@24,29# that nonequilibrium phase transitions occur in traf
flow on highways in the vicinity of on and off ramps. Fro
the modeling point of view, such highway segments can
treated as open systems. Hence the understanding o
model dynamics under open boundaries is indispensab
respect to realistic computer simulations of real traffic s
tems.

II. DEFINITION OF THE MODEL

For the sake of completeness, we will now briefly rec
the definition of the VDR model@16,17#. Afterwards, a dif-
ferent insertion strategy is introduced, which is able to elim
nate large holes due to hard-core exclusion, occurring w
considering the standard insertion procedure,1 and therefore
allowing us to investigate the whole spectrum of possi
system states. Throughout the paper we assume that the
ticles move from left to the right. Particles are therefore
serted at the left end of the chain. The model is defined o
lattice of lengthL, where every single cell can be empty
occupied by just one particle~vehicle!. The speed of each
vehicle can take on one of thevmax11 allowed integer val-
uesv50,1, . . . ,vmax. The state of the road at timet11 can
be obtained from time stept by applying the following rules
to all cars at the same time~parallel dynamics!: ~1! Step 0:
randomization parameter; determination ofpn5p(vn). ~2!
Step 1: acceleration;vn→min(vn11, vmax). ~3! Step 2:
braking;vn→min(vn, dn21). ~4! Step 3: randomization;

1Usually, the first cell of the system is occupied with a certa
probability.
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vn→H max~vn21,0! with probability pn ,

vn with probability 12pn ,

~5! Step 4: driving;xn→xn1vn .
Heredn5xn112xn denotes the distance from the next c

ahead, where the numberdn21 of empty cells in front of the
nth vehicle is usually called ‘‘headway.’’ One time step co
responds to approximately 1 s in real time@14#.

For simplicity we study the case with two stochastic p
rameters only:

p~v !5H p0 for v50

p for v.0.
~2!

Here, p0 controls the fluctuations of cars that have n
moved in the previous time step, and thus determines
velocity of a jam.p controls the velocity fluctuations of mov
ing cars. Equation~2! includes the so-called slow-to-sta
casep0@p, where the model shows phase separation
metastable states@16#. It is interesting that an alternativ
choice ofp(v), e.g.,p0!p leads to a completely differen
~even contrary! behavior. Note that forp05p, the original
NaSch model is recovered. For further details on the mo
see Ref.@17#. As mentioned before, the special case w
vmax51 andp(v51)50 with open boundaries is analyze
in Ref. @28#.

In Fig. 1, a typical fundamental diagram of the period
VDR model~full line! is shown. It can be divided into thre
different regimes according to the jamming properties@16#.
For densities up tor1 no jams appear, and jams existing
the initial conditions dissolve very quickly. Abover2 in con-

FIG. 1. Fundamental diagram~FD! of the VDR model and the
NaSch model~inset!. The full lines correspond to periodic bounda
conditions while the symbols represent states obtained using o
boundaries. The fluctuation parameter is set top050.5 for cars at
rest, andp50 for driving cars. In the NaSch model~inset!, p
50.5 for all velocities. For high inflows (!), the FD shows a very
interesting shape, i.e., there are densities where the system can
on three different states.
3-2
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trast, no homogeneous state without a jam can exist. T
jammed state is characterized by a wide phase separated
and free-flowing vehicles. However, between the two den
tiesr1 andr2, the system can be in two different states. O
is a metastable homogeneous state with a high flow and
extremely long lifetime. Jams can appear due to inter
fluctuations or external perturbations, i.e., by stopping c
The other state is a phase separated state with a wide
which can be reached by the decay of the homogeneous
or directly owing to the initial conditions. For large system
the differencer22r1 strongly decreases and vanishes in
thermodynamic limit. The metastable states of the VD
model are found to be very sensitive against perturbations
Ref. @30#, this sensitivity is studied analytically on the bas
of random walk theory. Moreover in Ref.@31#, it has been
observed that the strong phase separation of the mode
be broken by local lattice defects, i.e., stop-and-go traffic t
does not occur without lattice defects being found.

A schematic representation of the analyzed system is
picted in Fig. 2. We expanded the width of the left bounda
from one single cell to a minisystem of widthvmax11. This
is done to provide a proper insertion strategy allowing us
investigate the whole spectrum of possible system sta
That is, the maximum inflow into the system should cor
spond to the maximum possible flow of the determinis
VDR model.2 The allocation of the minisystem~left bound-
ary! has to be updated every time step before the vehicle
the complete system. The update procedure consist of
steps. If one cell of the minisystem is occupied, it has to
emptied first. Then a vehicle with initial velocityvmax is
inserted with probabilityqin . Its position has to satisfy the
following conditions:~i! The headway to the first car in th
main system is at least equal to the maximum velocityvmax,
and ~ii ! the distance to the main system has to be minim
i.e., if no vehicle is present in the main system within t
first vmax cells, the first cell of the boundary is occupied.

We illustrate the benefits of this insertion strategy for t
case of the maximum insertion rateqin51, i.e., in every time
step one vehicle with velocityvmax is inserted. The initial
position of these vehicles will circulate within the bounda

2This is also equal to the maximum flow in the determinis
NaSch model. The maximal flows in the stochastic versions of
models are always smaller.

FIG. 2. Schematic representation of the analyzed system.
move from left to right, and are represented by dark cells, whe
empty cells are white. The left boundary is given by a small sys
consisting ofvmax11 cells. This particle reservoir is occupied by
most one car with probabilityqin . The right boundary consists of
single cell occupied with probabilityqout .
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from the right to the left end. This is due to the fact th
inserted vehicles will occupy a positionvmax cells ahead, so
that the initial position of the next vehicle must be shift
about one cell back to satisfy condition~i!. After a while all
vehicles move with maximum velocityvmax and the minimal
headway ofvmax cells. This corresponds to the maximu
flow pattern of the model. For smaller values ofqin , the
system is adjusted into states with lower densities and flo

At this point, we want to stress that the maximum flo
state of the VDR and NaSch model withvmax.1, and more-
over even a large spectrum of system states cannot be
tained with the help of the standard insertion proced
where just the first cell of the system is occupied with
certain probability. For example, forqin51 and only one
single cell used as boundary, the velocity of inserted carsv in
forms a sequence corresponding to a circulating pattern,
v in5(5,4,3,2, . . . ), instead of the circulating positions in th
case of the enhanced boundary. As a consequence, one
an artificial phase diagram and unusual dynamics espec
for small p. Further, there is a lack of obtainable syste
states~high flow! since continuous small gaps cannot be ge
erated within this standard strategy. For details see R
@25,26#, where the NaSch modelvmax.1 is studied in the
context of the standard boundary condition.

The right boundary is realized by a single cell linked
the end of the system. Here the update is applied simila
the case of the left boundary before the general vehicle
date procedure. First, the right boundary is cleared~if neces-
sary! and then occupied with probabilityqout. This corre-
sponds to an outflow probability of 12qout. At last, cars are
removed if their velocity is large enough to reach at least
~empty! boundary cell.

Next, an analytical expression for the inflowJf ree(qin) for
the present insertion strategy is given. This expression
valid for all cases investigated in this paper, even for
NaSch model. Note that the inflow into the system is equa
the flow in the free-flow phase. As shown above, the init
position of vehicles circulate from the right end of th
boundary to the left end forqin51. Finally, if the last cell of
the boundary is occupied, this vehicle is not able to enter
system anymore, but will move to the first cell within th
boundary instead. Therefore, the first cell has to be refres
in the next update step before a new vehicle may be inser
so that effectively five cars are inserted in six time steps~for
vmax55). In general, one has to consider an arbitrary ins
tion rateqin . Obviously, when calculating the inflow, one ha
to subtract from the vehicle insertion rateqin just the events
that lead to an occupation of the last cell of the bounda
These are all events wherevmax11 vehicles are inserted
consecutively into the boundary. Note, that if a series of
sertion events is interrupted~no insertion!, the process re-
starts at the first cell of the boundary. In the language o
stochastic process, this can be formulated as follows.
vehicle insertion can be seen as a sequence of Bernoull
als, i.e., an insertion of a vehicle corresponds to a ‘‘succe
S ~probability qin) while a nonoccupation corresponds to
‘‘failure’’ F ~probability 12qin). Now a ‘‘success run’’ of
length r within a sequence of trials will be defined as fo
lows. A sequence ofn letters S and F contains as many
e

rs
as
3-3
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‘‘success runs’’ of lengthr as there are nonoverlapping u
interrupted blocks containing exactlyr letters ofS each. For
example, the sequenceFuSSSuSFuSSSuSSSuSSF contains
three success runs of length 3. The probability that a suc
run occurs at thenth trial will be denoted asun in the fol-
lowing. Obviously, the probability that a series ofr successes
occurs at the trialsn,n21, . . . ,n2r 11 is equal to (qin)

r . In
this case the success run occurs at one among these tr3

Then the probability that a success run occurs at trial num
n2k(k50,1, . . . ,r 21), and the followingk trials are suc-
cesses is equal toun2k(qin)

k. These events are independe
and one gets the following relation:

un1un21qin1•••1un2r 11~qin!r 215~qin!r , ~3!

with u15u25•••5ur 2150. This relation can be solve
with the help of a generating function~see Ref.@32# for
details!. The following solution for the probability that th
considered trial corresponds to a success run can be der

u5
~qin!r

11 (
n51

r 21

~qin!n

5
~qin!r

(
n50

r 21

~qin!n

. ~4!

Returning to the considered boundary with a length ofvmax
11 cells ~wherebyvmax is set to 5), the following expres
sion for the inflow into the system~flow in the free flow
phase! is obtained:

Jf ree~qin!5qin2u5qin2
qin

6

(
n50

5

qin
n

5
qin~qin

5 21!

qin
6 21

. ~5!

Note that an analogous analytical expression for the infl
can be used for anyvmax.

III. SIMULATION RESULTS

Now, the most relevant results of the investigated sys
are discussed on the basis of numerical simulations. Th
different cases of the model dynamics are considered. At
we take a look at the standard NaSch model, which can
viewed as a special case of the VDR model withp05p. It
provides a point of reference for the cases with metastab
and helps to clarify whether the phase diagram of the Na
model is comparable to the one of the ASEP. Then gen
parameter combinations of the VDR model, including slo
to-start behavior and thus metastability, are treated for
different cases. In the first case, fluctuations in the movem
of vehicles are suppressed, so that only the jam outflow
stochastic. This case is comparable to the system inv
gated in Ref.@28#, except for the higher velocityvmax.1.
Moreover, we investigate the case of stochastic veh

3One has to take into account here that successes may occu
fore trial n2r 11.
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movement such that phase separation is still ensured. For
parameter combination, we point out characteristic additio
features due to spontaneous jamming.

A. NaSch model:p0Äp

As already mentioned in Sec. II, the special casep05p of
the VDR model is equal to the NaSch model. The cor
sponding phase diagram obtained by numerical simulati
is plotted in Fig. 3~see also Refs.@23,24#!. In the free-flow
phase, the system is jam-free except for some small ja
formed at the right boundary. Hence the flow is given by t
particle inflow. For vmax55, this is equal toJf ree(qin)
5qin(qin

5 21)/(qin
6 21) in correspondence with Eq.~5!. On

the contrary, in the jam phase the system is dominated
large jams of various sizes mostly generated at the r
boundary due to the restricted outflow. Consequently,
flow is determined by the outflow parameterqout. On the
contrary, in the maximum current~MC! phase, the flow is not
restricted by the boundaries but rather by the maximum p
sible bulk flow of the given model. The MC phase span
rectangle in the phase diagram. The boundaries are give
the outflow parameterqout* corresponding to the density i
the jam outflow arearR(qout* ), and the probabilityqin* accord-
ing to the maximum flow of the model@Jf ree(qin* )5Jmax#. If
the inflow Jf ree(qin) surpasses this value, jams are form
most likely direct in front of the boundary, so that the inflo
into the system is hindered. Given that the maximum flow
the NaSch model is restricted by the fluctuation paramete

be-

FIG. 3. Phase diagram of the NaSch model derived from Mo
Carlo simulations. In the free-flow phase~a! the flow is determined
by particle injection at the left boundary, whereas in the jamm
phase~b! the particle outflow at the right boundary is the determ
ing factor. On the contrary the flow in the maximum current~MC!
phase~c! is given by the maximal possible flow due to the mod
dynamics. The full lines correspond to the parameter combina
p05p50.5, while the dotted line represents a deterministic sys
p05p50. Note that the maximum current phase vanishes for
deterministic case.
3-4
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is clear that the area of the MC phase shrinks with decrea
p until it vanishes completely for the deterministic casep
50.

Up to here, the phase diagram of the NaSch mode
qualitatively in complete agreement with that of the ASE
(vmax51), which is known exactly@33,34#. As already men-
tioned, this coincides with the argument of Kolomeiskyet al.
@19# that models with one single maximum in the fundame
tal diagram~periodic system! exhibit the same phases fo
open boundaries. In order to determine the fundamental
gram from the open system, global flow and densities
measured. These global quantities are obtained by avera
over all cells. In contrast, bulk values are measured in
middle of the system. For low inflow and restricted outflo
the bulk density is justrR , whereas for the free-flow case
is given byrL . By varying the inflowqin and the outflow
qout, we can generate all possible bulk densities and thus
full fundamental diagram@see Fig. 1~inset!#. This agrees
with that obtained in the periodic system as predicted by
extremal flow principle~1!.

We like to stress that another choice of the insertion st
egy can produce different phase diagrams. This happen
fact, for insertion strategies that are not able to achieve
maximum flow of the NaSch model. Then only a part of t
state space is scanned.

B. Partially deterministic VDR model: p0Ì0, pÄ0

We proceed by characterizing the typical properties of
VDR model with metastable states and phase separated
jams. Figure 4 summarizes the results of our Monte Ca
simulations for a VDR model where fluctuations of fre
flowing vehicles are suppressed. If not stated otherwise,

FIG. 4. Phase diagram of the VDR model with determinis
movement (p50) of free-flowing vehicles. The phase diagram
similar to that of the NaSch model. However, there are some
ferences, most notably on theqout50 line. Furthermore, two differ-
ent regions~b! and ~c! in the jam phase have to be distinguish
with respect to their microscopic structure. The JO phase~d! is
characterized by very wide continuously growing jams. In t
phase, very high flows can be observed in finite systems.
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stochastic parameter for standing cars is set top050.5 in the
following. As in the NaSch model, three different phases c
be distinguished. The free-flow phase is very similar to
free-flow phase of the deterministic NaSch model since
vehicles move deterministically through the system. No ja
are formed, except for some small ones occurring at the r
boundary. However, these small jams dissolve very quic
since the flows in the free-flow phase are smaller than
jam outflow. One very interesting peculiarity that cannot
found in the NaSch model occurs in the caseqout50, i.e.,
maximal outflow. Here even for inflows greater than the o
flow of a jamJf ree(qin).@Jf ree(qin* )5Jout#, the system is in
the free-flow phase. This is indicated by the thick black li
in the phase diagram. The origin of this line can be explain
quite simply taking into account that vehicles inserted in
the system move deterministically, and no perturbations
present. Again the flow within the free-flow phaseJf ree(qin)
is given by Eq.~5!.

The microscopic structure of the two different jam phas
of the VDR model is characterized briefly in the following.
look at typical space-time plots in Fig. 5 reflects that bo
phases produce a striped structure, i.e., compact jam clu
alternating with free flow regions. At the right boundar
free-flow segments as well as compact clusters are ef
tively injected into the system. Both regions stay most like
separated due to the dynamics and move backwards.
inflow into a single cluster is produced by the stochas
outflow of the preceding cluster. Therefore the width of t
clusters performs a nonbiased random walk@30# until the
clusters are far enough from the left boundary, i.e., there
preceding cluster present. If a cluster finally arrives near
left boundary, it becomes the first one in the system so
its inflow gets equal to the inflow into the system. The clus
width now follows a biased random walk. If the inflow i
smaller than the outflow of a jam,Jf ree(qin),@Jf ree(qin* )
5Jout# ~jam-I phase!, the width decreases in average while
increases forJf ree(qin).@Jf ree(qin* )5Jout# ~jam-II phase!.
Note, that in the jam-I phase, the clusters vanish often be
they reach the left boundary~Fig. 5, top!.

The most interesting result is that a new phase with
nonstationary oscillating density pattern and very high flo
in finite systems can be found in the VDR model forqin

.qin* andqout,qout* . The new phase will be denoted as th
jam outflow ~JO! phase in the following. This notation i
motivated by the fact that in the thermodynamic limit, th
system flow is only determined by the JO. Moreover, t
microscopic pattern reveals that in the JO phase the syste
dominated by one single large jam4 as can be seen in Fig. 6
This peculiarity has its origin in the metastability of th
model, leading to the so-called local-cluster effect@35#, i.e., a
small local disturbance of the system can lead to the form
tion of a global wide jam. Due to this effect the global de
sity in the JO phase cannot be related to one of the boun
densities. In fact, the left boundary density~inflow! directly
determines the global density and the high flows during

4This is indicated by OJ~one jam! in Fig. 4.

f-
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time interval Tf ree ~see Fig. 6!. On the contrary, the righ
boundary~outflow! only acts as the local seed that causes
formation of wide global jams. The density within the corr
sponding jammed time intervalTjam depends on the jam
outflow, which is a fixed parameter of the model, and
inflow. However, the right boundary density exerts an in
rect influence to the global density since it determines
frequency of occurrence for wide global jams. Shortly befo
the transition to the jam phase, i.e., increasingqout, addi-
tional small jams are formed at the right boundary. The
small jams constrict the formation of wide global jams
that the global density slightly decreases before it increa
again. In fact, this sequence of the density changes~increase-
decrease-increase! combined with the high flows are the or
gin for the interesting shape of the curve (!) corresponding
to the JO phase in the FD~see Fig. 1! where the system ca
take on three different states. Note that in Fig. 1 the glo

FIG. 5. Typical space-time plots of the two different jam phas
of the VDR model for a system consisting ofL5500 cells. The top
part of the figure represents the jam-I phase (qout50.4, qin50.3),
while the jam-II phase (qout50.4, qin51.0) is shown in the bottom
plot.
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densities instead of the bulk densities are considered du
the oscillating density pattern. This may lead to small diff
ences compared to the bulk density in the middle of
system. However, besides the new states that are ascrib
the JO phase (!), the boundaries of the phase diagram c
easily be related to the periodic FD of the VDR model
proper parameter combinations are chosen (s), so that in
this sense the extremal current principle is fulfilled.

In the following a phenomenological approach for t
flow in the JO phase is given. The jam front that origina
from the right boundary moves backwards with a velocity
v jam512p0 @17# until it reaches the left boundary. In th
meanwhile, i.e., for the time intervalTjam , the jam outflow
determines the system flow. The duration timeTjam is pro-
portional to the system sizeL. It is the average time interva
L/Jout needed for the jam front to move from the right to th
left boundary plus the timeL/vmax the last car of the jam
needs to move from the left to the right boundary.Jout
5vmax/@(vmax/(12p0))11# corresponds to the jam out
flow. This leads toTjam5L@1/Jout11/vmax# for the mean
duration time where the system flow is dominated by the j
outflow. Note that the inflowJf ree(qin) does not influence
this time intervalTjam at all. In contrast, the durationTf ree
where the flow is given by the inflow does not depend on
system size, but only on the probability that a jam emerg
Assuming that the right boundary is blocked, the first car
front of it has to slow down if the distance is smaller than t
maximum velocity. The probability of finding a car withi
the scope ofvmax cells at the blocked boundary is equal
qin . Note that this assumption holds since determinis
movement of free-flowing vehicles is considered so that
inflow at the left boundary can directly be mapped to t
right boundary. Thereof only the fraction of about 1/(vmax
11)5 1

6 of cars has to brake completely to zero, namely,
cars that are directly in front of the boundary~no more free
cell left!. This fraction of stopped cars will cause a large ja
taking into account that the average flow in the JO phas

s

FIG. 6. Space-time plot of the JO phase. The system is do
nated by one large jam that does not vanish until it reaches the
boundary. The model parameters are (p50.0, p050.5, qout

50.01,qin51.0) andL5500.
3-6
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larger than the jam outflow. The rest of the slowed down c
will only brake down to zero~cause a jam! if the boundary is
blocked even in the next time step. The probability for this
equal toqout

2 . Neglecting the less probable events, one g

the estimationTf ree51/@qin(
1
6 qout1

5
6 qout

2 )# for the time du-
ration that the system flow is determined by the inflow. T
flow in the JO phase can then be estimated by

JJO5
TjamJout1Tf reeJf ree

Tjam1Tf ree
. ~6!

Consequently, the reason for the strong size dependenc
the high flow states in the JO phase becomes clear. For s
systems, the time periods with a ‘‘high flow’’ play an integr
part in the overall flow while for larger systems these regio
can be more and more neglected. Finally, in the thermo
namic limit only the jam outflow determines the system flo
At this point it should be mentioned that for growingqout
even in the jam outflow region~within Tjam), additional
small jams are formed at the right boundary so that the
croscopic structure merges into the striped pattern of the
phases. As a side effect, these small jams can enlarge
time durationTjam .

The comparison of the predictions for the flow within th
JO phase shows good agreement with the simulation re
~inset Fig. 7!. The top of the figure points out the characte
istic properties with respect to the system inflow. Theqout
50 line of the phase diagram corresponds to the free fl
phase. As soon as the outflow is restricted, i.e.,qout.0, the
global flow drops to a significantly lower level even for ve
smallqout,qout* ~JO phase!. Remind that the sharp decline o
the flow with growingqout is predicted by the estimation@see
Eq. ~6! and inset in Fig. 7#. Further, as can be seen in th
curve for qout50.01, for example, the global flow grow
with an increasing inflowJf ree(qin) if very low qout is chosen
so that high flow states are present. Obviously this effec
caused by the increased free flow within the time perio
Tf ree . However, the flow quickly converges to the jam ou
flow Jout with further increasingqout. If qout trespasses on
qout* , the capacity of the right boundary determines the s
tem flow once the inflow is larger than the capacity of t
right boundary. These states can be identified by a large
teau on a level belowJout ~Fig. 7, top!. The system is now in
the jam phase. At the bottom of the figure, the depende
between the global flow and the outflow restrictionqout is
shown. This confirms the results discussed above.

C. Stochastic VDR model:p0ÌpÌ0

So far we have considered a particular case of the V
model where vehicles move deterministically if once star
up. A substantial property of this model variant is that t
only stochasticity comes from the jam outflow. However, d
to the fact that jams are formed only because of the outfl
restrictionqout.0, the generation of jams within the diffe
ent phases is determined by the right boundary. Now
investigate the VDR model with stochastic movement of f
flowing vehicles as an additional element. We focus on
so-called slow-to-start case withp0@p, for which the ex-
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pected features as phase separation and metastable state~see
Refs. @16,17# for further details! are retained. If not stated
otherwise,p0 is set to 0.5 andp to 0.1. The stochastic move
ment of vehicles leads to an additional feature, in comp
son to the deterministic case, namely, the occurrence
spontaneous jams at sufficiently high flows. A look at t
phase diagram~see Fig. 8! reveals strong similarities with
the deterministic case. The free-flow phase is not influen
at all by the additional fluctuations, except for some sm
jams. Moreover, even the two different jam phases are in
tinguishable since spontaneous jamming does not play a
evant role within the free-flow segments of the striped ja
patterns. In the following, we concentrate our studies on
ditional effects based on the spontaneous jamming in the
phase.

The most eye-catching difference in comparison to
VDR model with deterministic movement can be seen at

FIG. 7. The dependence between system flow and inflow par
eter qin ~top!, respectively, outflow parameterqout ~bottom! is
shown for the VDR model with deterministic movement of fre
flowing vehicles. The model parameter was chosen as (L51000,
p050.5, p50).
3-7
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top of Fig. 9. The maximum possible flow cannot
achieved for maximum inflow anymore, even forqout50.
On the contrary, the curve corresponding toqout50 shows a
clear maximum at an intermediate inflow. The occurrence
this maximum can be explained as follows. Up to inflow
smaller than the outflow of a jamJf ree(qin),@Jf ree(qin* )
5Jout# the system is in the free-flow phase anyway. Furt
increasing the inflow shortens the average distance betw
the vehicles. This enlarges the probability that velocity flu
tuations can lead via a chain reaction to the spontane
formation of a jam. Therefore an increasing inflow lea
more and more frequently to spontaneous jams, and final
decreasing global flows. Note that the sensitivity of the hig
flow states also depends on the system size since the p
ability of finding a vehicle configuration that is capable
producing a jam is proportional to the number of vehic
~see Ref.@17# for details!. If the inflow is further increased
the system is overfed and the flow converges into a plate
Here the global flow is mainly determined by the outflow
jams occurring mostly near the left boundary, but also sp
taneously at erratic positions in the system. In addition
one switches on the outflow restrictionqout.0, the occur-
rence of a separated maximum levels off very fast due to
additional jams generated at the right boundary.

At the bottom of Fig. 9, the dependence of the global fl
on qout is plotted. The results are similar to Fig. 7, with th
high flow states~inset! occurring whenqout,qout* . However,
while in Fig. 7 the high flow states are most distinct for
maximum inflow Jf ree(qin51)5Jmax, here the maximum
high flow state is obtained for an optimalqin . That is, if the
inflow is too large, the spontaneous jamming levels off
flow drastically, and this greatly reduces the current from
deterministic case.

As a further demonstration of the impact of spontane
jamming within the JO phase, typical space-time plots
two different inflows are given in Fig. 10. In particular, th
interplay among spontaneous jams and jams generated d

FIG. 8. Phase diagram of the VDR model with stochastic
hicle movement. The phase diagram is very similar to the determ
istic case in Fig. 4. However, in contrast, the JO phase has t
distinguished with respect toqin . For relatively smallqin , the mi-
croscopic pattern is dominated by one large jam marked by OJ~one
jam!. If larger qin are considered in addition spontaneous jams
occur at erratic positions most likely near the left boundary.
04611
f

r
en
-
us
s
to
-
b-

s

u.

-
if

e

e
e

s
r

to

a restricted outflow is shown. The top of the figure cor
sponds to a situation with optimal inflow. This means that
inflow into the system is large enough to increase the ove
flow due to an increased flow between the time interval
two consecutive large jams. At the bottom of the figure
system with high inflow is depicted. Here spontaneous ja
are formed at arbitrary positions mostly near the left bou
ary caused by fluctuations in addition to the large jams g
erated due to the outflow restriction. Consequently, the s
tem flow is then completely determined by the jam outflo
This is very undesirable since the corresponding global flo
are considerably lower then for an optimal situation. In th
context in the following we show how to optimize the ove
all flow systematically by regulating the inflow into a syste

-
n-
be

J

FIG. 9. Top: Global flow vs inflow parameterqin . For qout

50, a wide maximum exists if inflows noticeably smaller than t
maximal possible inflow are considered. The maximum vanis
rapidly with increasingqin . Bottom: For capacities~right boundary!
above the jam outflow~JO phaseqout,qout* ), high flow states are
observable as in the deterministic case, but they are not as dis
The model parameters are chosen asp50.1, p050.5, and L
51000.
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and therewith suppressing the emergence of spontan
jams.

D. Application: Flow optimization

Besides the theoretical interest in metastable states, t
are also interesting real world traffic applications for th
phenomenon. The previous discussion about the existenc
high flow states shows that one can optimize the through
if the homogeneous state is stabilized by controlling the
flow into the system. This strategy was followed, for e
ample, in minimizing frequent jams in the Lincoln and th
Holland tunnels in New York@36,37#. Before traffic lights
were installed, jams used to form spontaneously within
tunnel. The installed traffic lights at the entrance restrict
inflow so that a critical value cannot be exceeded anym
With this strategy a remarkable increase of the overall cap
ity was achieved. The modeling aspect of this situation

FIG. 10. Typical space-time plots of the two distinguishab
states in the JO phase. The parameters are (qout50.01,L5500,
T510 000,p50.1, p050.5), with qin50.65 for the top part and
qin51.0 for the bottom one.
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be seen within the framework of this paper. The inflo
Jf ree(qin) represents the traffic demand. If a very highqin is
allowed, this typically leads to spontaneous jams inside
‘‘tunnel’’ as explained in the previous sections.

In Fig. 11, a situation is depicted where a traffic light
implemented in the simulations. The inflow is set to t
maximum possible valueJf ree(qin51)5Jmax to guarantee
that an uncontrolled inflow generates a multitude of jam
The traffic light itself is implemented in such a way that t
connecting cell between the system and the left boundar
blocked for the duration of the red-signal time period a
open for the green-signal period. As one can see in Fig.
for an optimal signal combination the possible flow is abo
twice as high as for an unrestricted system. In reality, i.e.,
case of the Lincoln and Holland tunnels, improvements
about 20% have been achieved. Note that in the case of l
green-signal periods the system converges to a system w
out traffic light restriction. However, the flow in the JO pha
for qin51 is determined by the jam outflow that can eas
be adjusted byp0. Therefore the choice ofp0 determines the
possible gain achieved by the flow optimization strategy
that the model can simply be calibrated to real traffic con
tions.

IV. CONCLUSIONS

We have analyzed the VDR model that enhances the w
known Nagel-Schreckenberg cellular automata model
traffic flow with features such as phase separation and m
stable high flow states. In our investigation we focused
the effects of open boundary conditions. For this purpose
have defined an insertion strategy that allows us to ana
the complete phase diagram of the model. A further adv

FIG. 11. The global flow is plotted vs the green cycle time f
some red cycle times. Obviously, the flow is nearly twice as h
for the optimal parameter combination than for a system with
inflow restriction. The limit of large green cycle times correspon
to an unrestricted system. Note that we have chosenp050.75 to
stress the strong impact of the inflow restriction onto the ove
flow. The remaining model parameters are chosen as followsp
50, qin51.0, qout50.0, L51000.
3-9
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tage of this insertion scheme is that the corresponding infl
into the system can be determined by an analytical appro

As a special case of the VDR model we also study
behavior of the NaSch model under open boundaries s
less is known about this model forvmax.1. It is shown that
the phase diagram of the NaSch model forvmax55 is quali-
tatively in total agreement with that of the ASEP. This on
more confirms the recent prediction by Kolomeiskyet al.
@19# that models with a unique flow-density relation, and o
single maximum in the fundamental diagram of the perio
system should show a comparable phase diagram that is
erned by an extremal current principle. Moreover, it is sho
that an unsuitable choice of the insertion strategy might l
to a different phase diagram where one or even more ph
are missing.

The main focus of this paper is on the VDR model w
slow-to-start behavior. This exhibits phase separation
metastable high flow states, and the corresponding peri
system has a nonunique flow-density relation in a cer
density regime. In this work we make clear how far the
sults from the NaSch model can be transferred and w
additional effects can be found due to the more comp
fundamental diagram.

First we studied a slow-to-start case where fluctuation
free-flowing vehicles are suppressed, so that the only
chasticity is found in the boundaries and the jam outflo
The jammed phases of this model variant consist of a v
characteristic microscopic structure. We found a striped p
tern with alternating large jam clusters and free-flow s
ments. It appears as if the microscopic structure of
jammed phases is generic for driven lattice gases with m
stability. For example, in Ref.@28# a very similar micro-
scopic structure has been observed in a related model.
thermore, in the area that corresponds to the maxim
current~MC! phase of the NaSch model, a phase denote
JO ~jam outflow! phase can be observed in the VDR mod
This phase can be seen besides the striped microscopic
patterns as a signature of metastability. For very lowqout
~outflow restriction!, very high flows are observed in a finit
system in this phase. The corresponding microscopic st
ture reveals that the system is then dominated mainly b
single large jam that originates from the right boundary~out-
flow restriction! and grows rapidly since the inflow into th
jam, which is determined by the system inflow, is larger th
the outflow of a jam. The explanation for the high flow
within this phase is given by jam-free areas between
succeeding large jams. Since the only seed for jammin
found in the restricted outflow, a finite probability that th
system is jam-free for a certain time exists. In these jam-f
areas, the high inflow contributes a significant portion to
overall flow. However, this portion decreases with increas
system sizes, and in the thermodynamic limit the flow
determined by the jam outflow. For growingqout even within
the JO phase, additional small jams are formed at the r
boundary and the microscopic structure transforms into
striped pattern of the jam phase. The flow in the thermo
namic limit is given by the jam outflow, which then corre
sponds to the maximum flow. This may be seen as a
between the MC phase of the NaSch model and the JO p
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of the VDR model. Due to the fact that the metastable bra
of the VDR model vanishes in the thermodynamic limit, t
fundamental diagram gets the same simple structure con
ing one single maximum as the one of the NaSch model.
only difference is the fact that the maximum flow in the VD
model corresponds to the jam outflow while the maximu
flow of the NaSch model is marginally larger than the ja
outflow @38# since in the NaSch model spontaneous jams
occur even in the jam outflow area. Nevertheless, the pre
tion of Ref.@19# for models with one single maximum hold
even for the VDR model in the thermodynamic limit exce
for qout50. Further, a simple phenomenological approa
has been suggested for the flow in the JO phase that sh
good agreement with numerical data and confirms that
approach of an interplay between jam-free segments
large jams holds.

We have also investigated the VDR model with stochas
movement of cars concentrating on the slow-to-start c
with p0@p. This exhibits the expected features such
phase separation and metastable states. The stochastic m
ment of vehicles leads to an additional feature that is
occurrence of spontaneous jams at sufficiently high inflo
However, this effect neither plays an important role in t
‘‘free-flow’’ phase nor in the jam phases which are nea
unaffected, and therefore are equal to the phases of the
terministic version. But the spontaneous jamming is a s
nificant feature in the JO phase. For lowqout, it is shown that
the maximum possible flow is no more achieved as in
deterministic case for a maximum inflow, but rather for i
termediate inflows. This can be explained by the sensitiv
of the metastable high flow states, which increases with
creasing inflows. In other words, the higher the inflow in
the system, the more frequently spontaneous jams ap
which influence due to a reduced jam outflow the over
flow drastically. As an interesting application to real traffic,
is further shown how the overall flow can be optimized sy
tematically by the installation of a traffic light regulating th
inflow into the system and thereby suppressing the forma
of spontaneous jams.

Similar results@39# can be found in a continuum versio
of the NaSch model, the SK model@40#. This model also
implicitly contains slow-to-start behavior. There is, howev
an important difference from the VDR model since the hi
flow states in the metastable region of the SK model seem
be much more stable than those of the VDR model@41#.

Summarizing, the results presented here are of theore
and practical relevance for various applications of traf
flow. Due to their simplicity, cellular automata models ha
become quite popular in recent years, which makes a pro
understanding of the underlying models indispensable.
particular, from the theoretical point of view several intere
ing points are the focus of this work. It is shown that for
proper insertion strategy, the phase diagram of the Na
model is equivalent to that of the ASEP. In this connecti
the origin of contradictory results is discussed. Further, i
shown that a striped microscopic jam pattern within the j
phases seems to be generic for models with metastability
another typical feature of the analyzed model, a phase wh
metastable high flow states can exist in finite syste
3-10
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is observed. This phase can be related to the maximum
rent phase of the NaSch model. It is shown how the h
flow states are influenced by the restricted outflow, wh
can lead to wide jams, and by spontaneous jamming. Fro
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practical point of view a flow optimization strategy applie
for example, in the Lincoln and the Holland tunnels in Ne
York is reproduced with the help of the finite-size effec
occurring in the analyzed model.
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